
UDC 539.3 

GENERALIZED PERIODIC PROBLEM OF THE THEORY OF ELASTICITY 
PMM Vol.42, K 3, 1978, pp. 521-531 

M. L . BURYSHKIN 

( Odessa ) 
( Received February 15.1977 ) 

The ordinary periodic problem for an isotropic medium has been studied in 
sufficient detail in [ 11. In spite of the infinite connectivity , the periodic 

stress-strain state can be easily investigated, since it reduces to the problem 
of determining two functions, analytic on the outside of the basic hole [ 2 1. 
The periodic states however do not exhaust the variety of the practical pro- 
blems dealing with the distribution of stresses in a medium weakened by a 
regular series of holes. 

Use of the group representation theory methods extends significantly the class 
of loads which allow an effective analysis of the periodic stress-strain state 
of an elastic medium. Instead of the condition of periodicity of the load 

function, it is demanded that the function transforms according to some un- 

specified representation of a symmetry group. It is shown that the corres - 
ponding problem of the theory of elasticity can be reduced to that of finding 
four functions analytic on the outside of the basic hole. The class of the 
functions under consideration is very general, consequently many loads in - 
teresting from the engineer’s point of view can be represented in the form of 
a linear finite combination of the components transformable in terms of the 
irreducible representations. The theoretical basis for all this is provided in 
[ 3 1. The basic results are illustrated by several specific examples. The ap- 
proach utilized can be suitably extended to become applicable to the cyclic 

and doubly periodic problems (with differing lattices ) of the theory of elasticity. 

1. Basic concepts, We study a biharmonic problem for an isotropic medium 
weakened by a series of holes and possessing group C, (cs,,’ or Durl) symmetry. The 
elements of this group are translations (shifts) T, along the 0 -axis onto the segments 
2mZ ,and reflections 0, (m = 0, &I, +2, . . .) in the planes &,,=T,,sHs 

(Fig. 1) . The hole contours are under the load Qayu (CL = 1, 2, . . . , m,) which 
transforms according to the irreducible representation z,, of the group Cs of dimen- 
sion m, [ 3 1. To make it clearer, the general part of this paper uses the formulation 
of the plane problem of the theory of elasticity. 

We say of each function pasv (p = 1, 2, . . . , m,) that it transforms according 

to the irreducible representation z,, if the following relations hold in the invariant 
coordinate system : 

Pavp (gz) = p?l zavpp (g) pavp (‘)I vg E c,, vz E E 
(1.1) 

Here z,,, (g) is the pp -th element of the matrix ‘r& (g) of the representation z,, 
and E is the domain of definition of the functions ?&I , possessing the group C, sym- 
metry. In the present case E is the domain of a complex plane and z is its represen - 

tative point. 
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Fig, 1 

According to [ 3 1, the stress-strain state under the load QavCL will be transformed 
in the same manner according to the representation a,,, i. e. any components of this 
state written in terms of the invariant reference system will satisfy the relations ( 1. 1) 

( *). If a load QCCW acting in the medium occupying the domain E generates nor - 
ma1 (U,(p), ovCkL!) and tangential ‘(r&(@*)) stresses, then according to the statements 
given above we have 

o‘$&j &z) = I$ zarcllt (9) o~)tz), ~~)~gz) = 2 ~~vr&j (g) o~‘@z) (1.2) 
P==l 

‘Ha 

$$ g!, (g@ - pzl TGVNP (g) T$ (z), vg E c,, vz E E (In, = 17 2, a**9 ma) 

In what follows, we shall denote the basic contour by L or &,W, &,(i) = I&,, 

L,(j) = T,&(j) (Fig. 1) and introduce the following notation : &fj) E Lm(i) is a 
point of the contour _&fjt, t = to@‘), d is the distance from the characteristic point 
of the basic hole (in the case of a circular hole this would be its center) to the imag- 

inary axis (Pa,+,, (2) and $&I (2) are the complex Kolosov - Mushelishvili functions 
describing the stress-strain state of the medium under the load Qayp, and qavrr (2) = 
$2~ (2) j- z’p.‘a- (z) is the Sherman function. Here and in the following j = 0, 1; 

m = 0, Al, *2, . . .; p, p = 1,2, . * -9 mz 

2, Properties of the complex functfonr, By virtue of the known 141 
relations connecting the combinations of the functions cp (2) and ‘II, (2) with the 

stresses , the relations (1.2 ) assume the form 

*) -This fact and a series of concepts connected with the elementary cell method were 
explained in more detail in the manuscript deposited by the author and entitled ” On 

the application of the theory of representation of discrete groups in the problem of 
equilibrium and small oscillations of linearly elastic systems. VINITI, No. 208-75, 1975. 
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In the 6 -neighborhood of some point zs E E the functions qaw (z) and $olV,l (z) 

are analytic. i. e. 

00 

and the symmetry of the domain E implies 

where %k> bFlr, %k (I), b,k(l) (ti = 0, 1, 2, . . .) are complex coefficients. 
Since the function fie cp’ (z) is invariant with respect to the coordinate system, 

the expression (2.1) simplifies to 

%w (gz) + &J, @:) = g zavsp (g) h&,, (z) + (p& (z)] (2.5) 

Let initially g = T m and hence gz = z $ 2ml, Substituting the series ( 2.3 ) 

and (2.4 ) into (2.5 ) and equating the coefficients of Like powers of (2 - so)‘, we obtain 

a$! = %X,pp (T,)a,k (k = 1. 2,. . .) 
P=l 

Then from (2.3 > and (2.4 ) it follows 

ma 

pzl zww CT,) (Pavp (2) 

Taking into account the property (2.6 ) we find from (2.2 ) , that 

(2.6) 

(2. (1 

Let now g = 8, and gz = __Z + 2ml, Carrying out theproceduregiven above 

we find that 

and 

‘p,,, (- z + 2ml) = s raV,,p (0,) 5 (- I)“-‘Gk (- z + za)” = (2.8) 
P=l k=O 

- 

We use the relation (2.8 ) to establish the validity of 
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and then find, that from (2.2 ) it follows 

(2.9) 

3. General form of the complex functions, Assuming that the func- 
tions qaV (2) are holomorphic in the domain occupied by the medium and vanish at 

infinity , we can write them, in accordance with [ 5 1, in the Cauchy integral form 

Taking into account (2.6 ), (2.8) and the fact that the matrix ‘rav (g) is unitary 
and integrating along the basic contour, we obtain 

Similarly , using the properties (2.7 ) and (2.9 ) we obtain 

(3.2) 

The functions O(P) (Z) and ‘\v@) (z) in (3.1) and (3.2 ) are holomorphic outside 
the basic contour. Using the elementary properties of group representation we can show, 
that for any functions B(p) (z) and Y?(p) (z) analytic in this region the formulas given 

define the functions qaVcL (z) and QaTCL (z) with properties (2.6 ) - (2.9). This en- 
ables us to assert that the expressions (3.1) and (3.2 ) hold for the complex potentials 

(Pcbz-cl(z) and qa,P(~) describing any stress-strain state of the medium transformable 
according to the irreducible representation r,v of the group C,., 

4. Converse problem of the theory of elasticity for narrow 

eowgrsrrea rtripr, The problem given here serves as an elementary illustration 
of application of the formulas (3.1) and (3.2 ) corresponding ,to the one- dimensional 
representations Taq (a = 0, TC; Y = 1, 2) of the group C,. We determine the form 

of the opening of uniform strength in a strip, with homogeneous stress-strain state : 
I-Jp) = p, q/(O) = q, ~~~(0) = 0. We assume that the opening is situated near the 

edge, and that the edge effect exerts an appreciable influence on the form of the opening. 
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Normal stresses of intensity P should be present at the contour. 

The solution is obtained using an approximate, though simple 
parameter. Use of the formulas (3.1) and (3.2 ) makes it possible 

method of a small 
to solve the problem 

effectively using more powerful methods [ 61. Within the strip in question bounded by 
the planes II0 and III (Fig. 1) ) we have 

CT r (2) = p + d”‘(Z), z crll (2) = q -I- q(z), Try (z) = rg (2) (4.1) 

where the superscript (1) denotes the stresses caused by the contour load Q1 (t) for 

which o+,(r) (t) = P - u,(a) (9 and @ff (t) =--‘c,.a(o? (t). 
We investigate two types of the boundary conditions on the rectilinear edges : ( a ) 

free support where the points of the edge may move in the y-direction only , and ( b ) 
rigid coupling where only a motion in the z - direction is possible, Combining these 
conditions in different ways, we arrive at four possible types of strips S,, (a = 0, n; 

Y = 1, 2) which represent elementary systems in the sense of one-dimensional ir- 
reducible representation z,~ . ( *), with respect to the infinite plate S with group C, 
symmetry. The author states in [ 3 ] that the stress-strain state of the strip s,, under a 
contour load Q1 (t) is identical with the state of the corresponding cell of the plate 5’ 
under a load obtained by continuation of the function Q1 (t) from the basic contour to 
the whole plate in accordance with the irreducible representation %VI i. e. by using 
the formula (1.1). In this case the boundary conditions at the strip edges are satisfied 
automa~cally . 

From the known relations of the theory of elasticity [ 7 ] and (4.1) , we have 

or@)+ca(zf = p+q+4 Re&v~(~), G(Z)- 4, G+(Z)(Z)+ 2&(s) = 

oB~{q--p+ 2 [(Z - z)v;;.Y~(z) - cpAz) + &vl(z)l}, 0 = eie 

where 8 denotes the polar angle. Taking into account the condition of uniform strength 
CIZ) (t) = A 1~: const and the boundary conditions on the contour L, we can replace 

the last formulas by 

(4.2) 

It should be assumed here that the function z. = d f W (5) maps conformally the 
outside of the unit circle of the complex 5 -plane onto the outside of the uniform 

strength contour which is to be determined. 
The relations (4.2 ) together with the usual arguments [ 7 ] yield 

(Pavl (2) = 09 A = F + Q - p 

*) Ruryshkin M.L., Romanenko F . A. and Sheianova E. N , Stress concentration around 

a circular hole in a strip of finite width. Theses of lectures given at the All-Union 

conference ” Perfecting the Methods of Computing and Design of Buildings and Stmct - 

ures Erected in Seismically Active Zones”, pt. 3, Kishinev, 1976. 



550 M , L . Buryshkin 

and this converts (4.3 ) to the form 

(4.4) 

Assuming now 

4) (5) = &Vl Id + w (C)l, El = $ 
and neglecting the powers of the small parameter 8 greater than third we find from 
(3.2), as in [7], that 

I# (5) = k&bkc-k + &a& @p)(l) + @r)@)) + &, (kF1)(*) _ A:*)(‘)) _I. (4. 5 ) 

2i9b2 (hp)(1) + A?)@)) co (5) 

Here and henceforth 

(4. 6, 

N-.oc 
v! -N 

and the asterisk denotes the absence of the term corresponding to the value m = 0. 
Substituting (4.5 ) into the condition (4.4 ) , passing to a system of algebraic equa- 

tions for the coefficients I’,~ (s = 1, 2,. . .) and bh. (k = 2, 3,. . .) and solving the 
latter with the help of the method of a small paramater, we find that 

B. = P-9 B, --- 4 
pq - 1’ (p -F_ q) ‘- P” 

p -;- q - 21’ ’ (P+P--w 

The indices in the expression for S,, (a = 0, X; V = 1, 2) and, consequently, 
in the formula (4.6 ) , are chosen accroding to the variant of the boundary conditions of 
the strip used (*), In the case of strips of double width (with the boundary conditions 

of the type S,l and Sn, ) weakened by two holes symmetrically distributed about the 
plane J&,, a method of loading, symmetric or skew symmetric with respect to this plane, 
does not result in new forms of equally strong contours. In a particular case of a = 0, 
v = 1, &1=-y 2 , the problem becomes ordinary periodic, and the function (4. i ) des- 
cribes a form of an equal strength hole obtained in [ 7 1. 

5. Generalized periodic problem of flexure of thin plates.The 
contour load in question of a plate with periodic structure is described by one of the 
functions QarlL (p = 1, 2, . . . , m,) transformable according to the irreducible 

representation r,, of the group C,. According to the formulas (3.1) and (3.2)) the 

*) see the last footnote. 
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computation of the stress-strain state of the plate reduces to determination of the com- 
plex functions (D(P) (z) and Y(p) (z) analytic outside the basic opening. The func- 
tions ace obtained from the system of boundary conditions [ 8 ] on the contour L 

&rffz\~ V) + Ks r(r - 5) G + &Jl @)I = P” @) + ic,t (5.1) 
(11 = 1, 2, . . ., m,) 

Here fir1 and. Ka denote the coefficients, $ is a real constant obtained from the con- 
sideration of uniqueness of the flexure, and 

Q 
f(n) (t) is a function depending on the load 

avps On the remaining contours the boundary conditions are satisfied automatically 
by virtue of the relations of the type (1.1) or (1. ‘2 ) . The simplifications associated with 
the generalized periodic problem consist of the fact that the dimension ma of the re- 

presentation z,, is not greater than two. Such a problem represents a natural gener- 

alization of the usual periodic problem corresponding to a unique irreducible represent- 

ation, It is expedient to remember that any method used to solve the last problem can 

be extended to a general case. We illustrate this below on the method of a small para- 

meter [5]. 
Assuming that the functions @(P) (z) and Y!(P) (2) are holomorphic and vanish at 

infinity and writing them in the integral Cauchy form, we find t after manipulating the 

formulas (3.1) and (3.2 ) , that in the neighborhood of the basic contour 

ma 

q?a,p (2) = YCCrf (2) - 
it c , ek+l [lb~~“*‘J$~ (2, k) - 

(5.3) 
=o p=1 

IbfyYTip(- 2 + 24 k)] 

Jf’(z, k) = $j Atp)(Q (E - 2)’ CE (A = Q Y) t 

where 5 is a point of the contour %. 
The unknown ~ncti~ Q,(P) (2) 

in powers of 

Q) , . . . (5.4) 
UP) (2) = ,jo e8@~p) (z), ?-I? (2) = *; e-w’ (2) 

and Y(P) (~1 are sought in the form of series 

Taking into account (5.4)) we substitute the expressions (5.2 ) and (5.3 ) into the boun- 
dary condition (5.1). Equating the coefficients of like powers of small parameter e 

in both sides of the resulting equation, yields the following infinite system of functional 
equations : 
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C-l 

K2(t - 7) 2 k [hfy’$:%joP;s-k_l (t, k - 1) + 
k=l 

-@f* 6 4 = i& At')(E) (5 - t)k e (A = cD, y; s, k = 0, i, . . _) 

Equations (5.5) can be solved consecutively for the elements of the series ( 5.4) 
using the Mushelishvili method, At each step of the process (at fixed s ) the functions 

CD8(P) (z) and Yy(P) (z) are obtained from a set of m, unconnected equations ( 5.5 ) 
corresponding to various values of p . The dependence of the system (5.5 ) on the index 
p relates to the fact that one cannot pass to the next stage until all equations of the 

previous stage have been solved. This results from the indeterminacy of the right-hand 

sides of the equations. 
Neglecting the powers of 6 higher than fourth, we reduce the solution of the gener- 

alized periodic problem to the case of circular holes and f(g) (11 = -$,t where A, is 

a real number, 

The condition that the flexure function is single-valued means, that in the present 
load variant the numbers en in (5.1) are assumed to be equal to zero. 

Substi~ting the expressions of the type (5.6 ) into (3. I ) and (3.2 ) , we can construct 
approximate analytic formulas for the functions %vL(~) and $kzlt(z). 

We illustrate the method by considering a generalized periodic problem of flexure 
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of a thin plate with holes, the contours of which are acted upon by uniformly distributed 
bending moments, We denote the intensity of these moments on the basic contour by 

My, assume that the Poisson’s ratio is equal to l/z, a = 3 and d = l,4. We must 

a& set f(P) (t) = -4.5 M, (t -d), K, = 5, K, = -1. 

e/x = 0 ‘Is ’ I ‘12 ‘16 

J 

- 

- 
‘,‘I* 

-- 

29 19 11 10 10 12 
42 32 25 23 22 23 

30 31 30 27 24 22 

22 31 34 30 25 22 

123 113 100 90 81 79 
93 97 107 116 126 128 

Table1 

18 32 
30 50 

26 42 

25 38 

99 162 
iii 61 

The Table 1 gives the values of (--l@Ma 1 JI)at various points of the contour L for 
the loads QOll (M, = M / 7) and Q,,, (MI = 2h4 I 7, M, = 0) for a = 23-r / 7, 4n / 

7, 6n / 7. The control relation Mr (f) = Ml is satisifed with an error not exceeding 6%. 

The results of the computations for the load Qou (normal periodic problem) show 
good agreement with the data given in the book [ 8 1. 

6. More general (translation - truncated) case of loading. We 
assume that the load Qzlr, (CL = 1, 2, . . . , m,) is transformed according to the ir- 
reducible representation zaV * of the subgroup c,* c C,. The length of the basic 
vector of the subgroup C,* is denoted by 21*, and 1” = nl where n is an integer. 
The functions Q& are defined arbitrarily on the first n contours counted from the 

basic contour in the direction of the J: -axis, and are defined uniquely on the remaining 
hole contours using expressions of the type (1.1) . Such a class of loadings was studied 
in [3 ] where an algorithm was given for a finite expansion of the functions Q& into 
terms which are transformable according to irreducible representations of the complete 

group c, of symmetry of the medium. (When using the formulas of [ 3 1, we must re- 

member the differences in notation, in particular the use of the asterisk), What was said 
above implies that any problem belonging to the class specified above can be reduced 
to a finite number of generalized periodic problems. 

Let Q denote an arbitrary contour loading, and Q I,(‘) (t,(O)) and Q l,(l) 
(t,(l)) be the corresponding loads on the contours L,(O) and L,(i), i. e. 

Following [ 3 1, it is expedient to introduce the notation 

Qtw = { 

Qw,, (P = 0, 4 

QPlp (O<l8l<~O (‘=” ‘) 

(6.1) 

where 6, is the Kronecker delta. 
If the loads &, (q = 1, 2) are related to the expansions of the functions Q&, 

then using some of the formulas of [ 3 1, relations (1.1) and (6.1) and the elementary 
properties of the irreducible representations, we can establish the relation 
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where =f$W W (PY rl = 1, 2; g CE c,> is the P’l -element of the matrix ‘6 (g) 
given in [ 3 1, N = n/2 and .N = (n - ‘i)/2 for the even and odd values of n , 
respectively. 

The scheme for computing the stress-strain state of the plate under the load Q&L 
is as follows: using the theorem of E 3 1, we determine the structure of the expansion of 

the function Q&, i. e. we clarify the generalized periodic problems to be solved ; 
then we use the formulas (6.2) to find the values of the loads on the contour L for 
these problems ; finally we study the problems and apply the principle of superposition. 

Fig. 2 

As an example, let us consider a plate (a = 3; d = 1,4) in which the contour of 

every fourteenth hole, as counted from the basic hole, is acted upon by uniformly dis - 
tributed bending momen? of intensity 2M. Let us separate the loading of the plate 
into loads symmetric Q,,, and skew symmetric Qi2, with respect to the imaginary 

axis, 
The symmetric component is transformed according to the representation %I+ of the 

group C,* (n= 7). In accordance with [3 ] we have 

= 2 za Qia, 1 = + Qon + -$- (Qpn -r Qzr;, ll + Qsp, 11) (6.3 ) 
j=o 

Since 

the formula (6.2 ) implies that Qjp, 11 (t) = Jf (t - d) and Qjb, 12 (t) = 0 (0 = 2~ / 7; 
j = 0,1,2,3). The four generalized periodic problems corresponding to the expansion 
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(6.3 ) were solved in Sect, 5, The values of f--1@ M, 1 M) on the contour L were 
given for the load Of, in the penultimate row of the table, the latter obtained by 
summing the upper rows e The last row of the table corresponds to the load om*. The 
skew symmetric component is transformed according to the representation %,2* fn= 7). 

We have 

with Qjp,~a (t) = M (t - d) and Qjd,ll (1) =: 0 (fi = 2d7; j = O,t,2,3). We note that 
in the present case the stress-strain state of the section of the plate contained between 

the planes % and IIf, and of the freely supported strip (Fig. 2 ) weakened by a trans- 
verse set of circular holes, coincide. 
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