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The ordinary periodic problem for an isotropic medium has been studied in
sufficient detail in [1], In spite of the infinite connectivity , the periodic
stress-strain state can be easily investigated, since it reduces to the problem
of determining two functions, analytic on the outside of the basic hole [2].
The periodic states however do not exhaust the variety of the practical pro-
blems dealing with the distribution of stresses in a medium weakened by a
regular series of holes,

Use of the group representation theory methods extends significantly the class
of loads which allow an effective analysis of the periodic stress-strain state
of an elastic medium, Instead of the condition of periodicity of the load
function, it is demanded that the function transforms according to some un-
specified representation of a symmetry group, It is shown that the corres -
ponding problem of the theory of elasticity can be reduced to that of finding
four functions analytic on the outside of the basic hole, The class of the
functions under consideration is very general, consequently many loads in-
teresting from the engineer's point of view can be represented in the form of
a linear finite combination of the components transformable in terms of the
irreducible representations, The theoretical basis for all this is provided in
[3]. The basic results are illustrated by several specific examples, The ap-
proach utilized can be suitably extended to become applicable to the cyclic
and doubly periodic problems (with differing lattices ) of the theory of elasticity.

1, Basic concepts, We study a biharmonic problem for an isotropic medium
weakened by a series of holes and possessing group C, (Cap' or Djpl) symmetry . The
elements of this group are translations (shifts) T'p, along the z -axis onto the segments

2ml ,and reflections 8, (m = 0, +=1, 42, .. .)in the planes II,,=T,,;,II,
(Fig. 1). The hole contours are under the load Qavu w=1,2,...,m,) which
transforms according to the irreducible representation 7T,y of the group (¢, of dimen-
sion m, [3]. To make it clearer, the general part of this paper uses the formulation
of the plane problem of the theory of elasticity,

We say of each function pgy (W = 1, 2, . . ., mg) that it transforms according
to the irreducible representation T, if the following relations hold in the invariant
coordinate system:

Mg,

pavu (gz) = p§1 T"GNUD (g) pavp (Z), Vg = Ca, VZ &= E (1. 1)

Here 7Tgwp (g) is the pp -th element of the matrix Tov (g) of the representation Ty
and F is the domain of definition of the functions Paw ,possessing the group C,sym-
metry, In the present case E is the domain of a complex plane and z is its represen -
tative point,
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According to [3 ], the stress-strain state under the load (., will be transformed
in the same manner according to the representation Ty, i,e. any components of this
state written in terms of the invariant reference system will satisfy the relations ( 1. 1)
(*). If a load Qaru acting in the medium occupying the domain E generates nor-
mal (0™, 0,®) and tangential ‘(t,,®) stresses, then according to the statements
given above we have

ﬂ’ﬁa mm
ol (gz) = Q§1 Tap (8) 0P (2), oW (gz) = g{ Tupp (8) 0O (2) (L2)

Hig

T (g7) = pzl Top (8) T (2), VEEC, VIEE (h=1,2,.imy)

In what follows , we shall denote the basic contour by L or f,/@, 7,,) = INOR
L = T'mL¢"¥) (Fig. 1) and introduce the following notation: ¢,() < [, () is a
point of the contour L, ¢ = £,{®, d is the distance from the characteristic point
of the basic hole (in the case of a circular hole this would be its center) to the imag-
inary axis Qg (2) and Yo (2) are the complex Kolosov — Mushelishvili functions
describing the stress-strain state of the medium under the load @y, and Yoy (8) =
Paw (2) + 2@ awp (2) is the Sherman function. Here and in the following j = 0, 1;
m=09:t1rj:25 .. e H,p=1,2,.. o Ma

2, Properties of the complex functions, By virtue of the known [4]
relations connecting the combinations of the functions ¢ (z) and 1 (z) with the
stresses , the relations (1, 2) assume the form

Mg,
(@, (2) + Py (2) lgx, 00 = p§1 Towp (8) [q};vp (2) + @;vp (2)] (2.1)

(7 — 2) Pgu (8) = @iy, (2) + W5, (D, = (2.2)

ma

pgll Taue (81 1(Z—2) P (2) — (P;vp (z) + \p;vﬂ @)l

*) This fact and a series of concepts connected with the elementary cell method were
explained in more detail in the manuscript deposited by the author and entitled " On
the application of the theory of representation of discrete groups in the problem of
equilibrium and small oscillations of linearly elastic systems, VINITI, No, 208-75, 1975,
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In the § -neighborhood of some point zg & E the functions QPovu (2) and Pauy (2)
are analytic, i.e,

o0 o (2. 3 )
Pavy (2) = Zo @y (2 — 20)', Yoy (2) = ;g'o by (3 — 20}, V26
and the symmetry of the domain E implies
9 S 2.4
Pony (g2) = kz fxll? (g2 — g3, \'baw. 2 ¥ (82—820)", vzE8 &

where auk, buk, aux®, by (6 =0,1,2,...) are complex coefficients.
Since the function Re ¢' (2) is invariant with respect to the coordinate system,
the expression (2. 1) simplifies to
My
Voo (82) - 0o (82) = 2 T (8) [, (2) + @y (2)] (2.5)
Let initially § = T, and hence gz = z 4 2ml. Substituting the series (2.3)
and (2.4 ) into (2, 5 ) and equating the coefficients of like powers of (z — Zo)k, we obtain
Ma,

1)
“fuz = pzlfamp (T,) Aoy (k=1.2,...)

Then from (2.3 ) and (2.4 ) it follows

ma ©
Pavp (z+2ml) = pgll Tavpo (T'm) kZo api; (5 — 2o)f = (2.6)
ma -
pz‘l TOWHD (Tm) (pavp (Z)
Taking into account the property (2, 6) we find from (2,2), that
Iﬂa
i (2. 1)
wa\;u( —{_ 2ml)—— < a-\,“p ( m) Ipa'\vp (A)
Letnow g = 0, and gz = —z + 2ml. Carrying out the procedure given above
we find that
o M
apx = (— 1)" 02‘1 Tavip (0,0) apy
and mg -
Py (— 2+ 2ml) = 021 Tavpo (Gm)kﬁ (— 1) agx(—2 + Zo)f = (2.8)
= =0

n’la
- pzi Tocvup (6m) Povp (2)

We use the relation (2.8) to establish the validity of

[(Z—2) (P;vu (z) — (P:awu (z) + lpt‘wu (Z)]emx' Oy —
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ma'
(Z - Z) 2 TGVMD( aw 2 Ta\up (pow ( )+
q:aw( Z -+ 2ml)
and then find, that from (2. 2) it follows

Mg - (2.9)
(—z242ml)=— p2=}1 Townp Om) Wan, (2)

m i

3. General form of the complex functions, Assuming that the func-
tions Qgw (2) are holomorphic in the domain occupied by the medium and vanish at
infinity , we can write them, in accordance with [5], in the Cauchy integral form

@) g4
G ( 76 1 Payp () Aty
Py (2) = lim Z ZI ) ](Z)_RS .
N> Ty W
Lm

M= —N j=1
Taking into account (2.6), (2.8) and the fact that the matrix Tgy (g) is unitary
and integrating along the basic contour, we obtain

My,

Doy (2) = 21 lim _2‘ Tonon (L) @ (2 + 2ml) — (3.1)
Tovou (Om) D (= 2 + 2m)]
L { Pavp (D41
N (z) = [g%) (z) = %g .EZE:_:__
L

Similarly , using the properties (2,7) and (2. 9) we obtain

ma N
Ve (2) = Z:1 }\;?co m; [Tovpn (T'n) v (z 4- 2ml) — (3.2)

Tovop (Om) ¥ (— = + 2mi)]

The functions @® (z) and W) (z) in (3.1) and (3.2 ) are holomorphic outside
the basic contour, Using the elementary properties of group representation we can show,
that for any functions () (z) and WP (z) analytic in this region the formulas given
define the functions Qg (2) and P4, (z) Wwith properties (2.6) —(2.9). This en-
ables us to assert that the expressions (3. 1) and (3. 2) hold for the complex potentials

Qap(z) and WPeapu(z) describing any stress-strain state of the medium transformable
according to the irreducible representation Tqv of the group C,..

4, Converse problem of the theory of elasticity for narrow
compressed strips, The problem given here serves as an elementary illustration
of application of the formulas (3. 1) and (3.2 ) corresponding to the one- dimensional
representations Tev (@ =0, m; v =1, 2) of the group C,. We determine the form
of the opening of uniform strength in a strip, with homogeneous stress-strain state:
0,® = p, 0,0 =g, 71,,® = 0. We assume that the opening is situated near the
edge, and that the edge effect exerts an appreciable influence on the form of the opening.
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Normal stresses of intensity P should be present at the contour,

The solution is obtained using an approximate , though simple method of a small
parameter, Use of the formulas (3, 1) and (3.2) makes it possible to solve the problem
effectively using more powerful methods [ 6], Within the strip in question bounded by
the planes Il and TI, (Fig.1), we have

0. (z)=p+0V(), o, (2)=g+0P(E) T,E@=1)0E (1)

where the superscript (1 denotes the stresses caused by the contour load Q, () for
which ¢, (t) = P — 0,® (f) and 1,01 (8) =—T5(@ (2).

We investigate two types of the boundary conditions on the rectilinear edges: (a)
free support where the points of the edge may move in the Y-direction only,and (b)
rigid coupling where only a motion in the z - direction is possible, Combining these
conditions in different ways, we arrive at four possible types of strips S, (@ = 0, n;

v = 1, 2) which represent elementary systems in the sense of one-dimensional ir-

reducible representation Tqv . ( *), with respect to the infinite plate S with group C,
symmetry, The author states in [3] that the stress-strain state of the strip S,y under a
contour load @y () is identical with the state of the corresponding cell of the plate S
under a load obtained by continuation of the function @, (#) from the basic contour to
the whole plate in accordance with the irreducible representation Vavs i,e, by using
the formula (1, 1), In this case the boundary conditions at the strip edges are satisfied
automatically,

From the known relations of the theory of elasticity [7] and (4. 1), we have

0, (3)4-06(2) = p-+q-+4 Re Qany (2), Ga (2) — O, 69 (2) (2) + 20Tr9(z) =
02 20 (0 b+ 2[(7 — 2) Gon (2) — Pawa(2) + Bewa ()]}, 0 = e

@ (3)

where 0 denotes the polar angle, Taking into account the condition of uniform strength
g (t) == 4 = const and the boundary conditions on the contour [,, we can replace
the last formulas by

.2
4BeCPav1(t)=P+A—-p——-q (%.2)

Gziﬂ:—g {Q i 4 + 2 [(E - t) (P:vl (‘t) - (P:xvx (t) + \b;wx (t)l} =4 — P (4. 3)

o’ (5)

It should be assumed here that the function z = d + @ () maps conformally the
outside of the unit circle of the complex {, -plane onto the outside of the uniform
strength contour which is to be determined.

The relations (4, 2) together with the usual arguments [ 7] yield

Pov1 3) =0, A=p+q—P

*) Buryshkin M, L., Romanenko F, A, and Sheianova E.N. Stress concentration around
a circular hole in a strip of finite width, Theses of lectures given at the All—Union
conference " Perfecting the Methods of Computing and Design of Buildings and Struct -
ures Erected in Seismically Active Zones”, pt, 3, Kishinev, 1976,
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and this converts (4. 3 ) to the form
02 o’ (G) {q

o’ ()

}=p—;—q_P (4.4)

Assuming now
0B =1+ It YO =¥ [+o] = Inrt

’ 1 d
V() = Yo [d +0 ()], & =3r 1=
and neglecting the powers of the small parameter € greater than third we find from
(3.2), asin [7], that

P = 2oL A ey (A 4 M) 6%, 05V — A (42
267, (MO 1 A{P) 6 (g)

Here and henceforth
N (4.6)
ALD hm S‘ * Tmm (‘ m) g _ lim Tavon (On)
5 k] n - D
N- oo ,~_N m* N-oo =l (m-—¢,)
and the asterisk denotes the absence of the term corresponding to the value m = 0.
Substituting (4. 5) into the condition (4.4 ), passing to a system of algebraic equa-
tions for the coefficients », (s =1, 2,...) and p, (k = 2, 3,...) and solving the
latter with the help of the method of a small paramater, we find that

By~ (7\;11)(1) 4 ;é”)('l)) B,er (}\(11 (1) ;\(ll)(‘l)) B3

0@ =t + b _ - (4.7)

. p—yq pqg—P(ptq):
By = -q—2P 4 (p—i—q—ZP)

The indices in the expression for Sev (@@ =0,7; v =1, 2) and, consequently,
in the formula (4.6), are chosen accroding to the variant of the boundary conditions of
the strip used (*), In the case of strips of double width (with the boundary conditions
of the type S, and §,; ) weakened by two holes symmetrically distributed about the
plane [, a method of loading, symmetric or skew symmetric with respect to this plane,
does not result in new forms of equally strong contours. In a particular case of & = 0,

v = 1, & =1/, , the problem becomes ordinary periodic, and the function (4, 7) des-
cribes a form of an equal strength hole obtained in [7],

5, Generalized periodic problem of flexure of thin plates, The
contour load in question of a plate with periodic structure is described by one of the
functions Qgau =12 ..., m,) transformable according to the irreducible

representation Ty, of the group C,. According to the formulas (3. 1) and (3.2), the

*) see the last footnote.
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computation of the stress-strain state of the plate reduces to determination of the com-
plex functions (e} (z) and W) (z) analytic outside the basic opening. The func-
tions are obtained from the system of boundary conditions [8] on the contour L

Koy (1) + K2 (¢ — T) @aw () + Yo ()] = W (¢) + icyt (5.1)
(w=1,2,..., mgy)
Here K, and K,denote the coefficients, ¢y is a real constant obtained from the con-
sideration of uniqueness of the flexure,and f®) (f) is a function depending on the load
Qqwp- On the remaining contours the boundary conditions are satisfied automatically
by virtue of the relations of the type (1. 1) or (1.2)., The simplifications associated with
the generalized periodic problem consist of the fact that the dimension Mg of the re-
presentation 7T, Is not greater than two, Such a problem represents a natural gener-
alization of the usual periodic problem corresponding to a unique irreducible represent-
ation. It is expedient to remember that any method used to solve the last problem can
be extended to a general case, We illustrate this below on the method of a small para-
meter {5].
Assuming that the functions () (z)and ¥ (z) are holomorphic and vanish at
infinity and writing them in the integral Cauchy form, we find, after manipulating the
formulas (3, 1) and (3.2), that in the neighborhood of the basic contour

o g,
Gon (@) = DV (@) — Y et Y MRV @ i) — )
k=0 p=1

g J&?’(—-— Z -+ 2d, k)]

% My,
Yoy (2) = lF(w)(z) —~ ; g1 ; [Mt‘-ﬁ)(l)"%) (z k) — (5.3)

ARRE T (7 - 2d, k)]
IO @ k) = i‘:ﬁSA“” OF—f& (A= %)

where ¢ is a point of the contour .
The unknown functions e (z) and V() (z) are sought in the form of series
in powers of

o oo (5.4)
O (z) = 3 D (z), ¥O)= N 'V (2)

$=0 8==20
Taking into account (5,4 ), we substitute the expressions (5,2) and (5, 3) into the boun-
dary condition (5.1), Equating the coefficients of like powers of small parameter &
in both sides of the resulting equation, yields the following infinite system of functional
equations:

OO0+ Kl — DO O+ ¥ =) (=0142.) G5

where

Ty,
@) =) +iet, ()= D (K AOI o2, 0)—
Pl
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AP0 B o (2, O + Ka MMOIE) o (2, 0) — MBI o, 07}

)= E{ EA [MEYDTE o s(t, ) —MEPIE) s (—F+2d, k)] —

Ryt —7) 2‘, B MEIE) s 8, b — 1) +

M&ﬂl)(ﬁj(f))‘ oo 1(—t+2d k— 1)]-}—-1(22 IMC )(I)J%‘)s_k_l (t, k) -
MBI s_H(— T4+2d, k)] (s=2,3,..)

T (t, k) = §A(p)(§)(§ FdE A=0, ¥is, k=0,1,...)

Equations (5, 5) can be solved consecutively for the elements of the series (5.4)
using the Mushelishvili method, At each step of the process (at fixed s ) the functions
O, (z) and W M) (z) are obtained from a set of m, unconnected equations (5.5)
corresponding to various values of W, The dependence of the system (5, 5) on the index
W relates to the fact that one cannot pass to the next stage until all equations of the
previous stage have been solved, This results from the indeterminacy of the right-hand
sides of the equations.
Neglecting the powers of € higher than fourth, we reduce the solution of the gener-
alized periodic problem to the case of circular holes and f®) (1) = Auf where 4, is
a real number,

DM (2) = g2 Be 1 et _C_f;_ &8 Tp 1 (5.6)
K; z p) f\‘ (z o d)..’. i 1\,1 12 (Z . d)"
o Ke L]
- 1\‘1 n1 3 - d B
A 73
gyl oy e by P f 1
) Ky s—d 7 Ky (:-—d)iimr—"i_g—

G 1 1
=3 u' - 3 4 1 1 1 2K2
2 - [o=p ~ ] + [ D ) -

1 21{3 3 |
G—dyp ( + Dy - X Duz) -+ o Dy, (zwd)ﬁ}
7"a nla

= pé"]lAp(;vgwxn 4 APen e EIA”O'gW)(l) — A

m
[¢2 TIla

Dyy = 2 B, (;“((’P«)(l)_yr~ l(pu)(2)) Dp.z ::pg‘l Ap(}\‘gpﬂ)(l)_i_ liﬂ#)(?))

The condition that the flexure function is single-valued means, that in the present
load variant the numbers € in (5, 1) are assumed to be equal to zero,

Substituting the expressions of the type (5,6) into (3. 1) and (3. 2), we can construct
approximate analytic formulas for the functions Porp(2) and Yo z).

We illustrate the method by considering a generalized periodic problem of flexure
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of a thin plate with holes, the contours of which are acted upon by uniformly distributed

bending moments, We denote the intensity of these moments on the basic contour by
M, assume that the Poisson's ratio is equal to '3, ¢ =3 and d = 1,4. We must

alsoset fM) () = —1.5 M, (1 —d), K, = 5, K; = —1.

Tablel
Q 8jn =10 1/s 3y 1, s 710 4y 1
Qenr 29 19 11 10 10 12 18 32
Qipnyy 42 32| 25| 23 | 22| 23| 30| 50
Quijpn, e 30 31| 30 27 261 22| 26| 42
I 22 31 34 30 25 22 25 38
Q% 123 113 | 100 90 81 79 99 | 162
Q*un 93 97 | 107 | 116 | 126 | 128 | 111 61

The Table 1gives the values of (—102M o/ M)at various points of the contour L for
the loads Qoyy (M; = M /7) and Qg (My =2M /7, M, = 0) for &« = 25 /7, 4n /

7, 6z / 7. The control relation M (1) = M, is satisifed with an error not exceeding 6%,
The results of the computations for the load Qo1 (normal periodic problem) show
good agreement with the data given in the book [8].

6, More general (translation - truncated) case of loading, We
assume that the load Qg (1 = 1, 2, , M) is transformed according to the ir-
reducible representation T, * of the subgroup C,* C C,. The length of the basic
vector of the subgroup C,* is denoted by 2/*, and % — p/ where 7 is an integer,
The functions Qmu are defined arbitrarily on the first n contours counted from the
basic contour in the direction of the & -axis, and are defined uniquely on the remaining
hole contours using expressions of the type (1.1), Such a class of loadings was studied
in [3 ] where an algorithm was given for a finite expansion of the functions szu into
terms which are transformable according to irreducible representations of the complete
group C of symmetry of the medium, (When using the formulas of [3], we must re-
member the differences in notation, in particular the use of the asterisk), What was said
above implies that any problem belonging to the class specified above canbe reduced
to a finite number of generalized periodic problems.,

Let Q denote an amitrary contour loading,and @ |m® (1,®) and Q |,®

(tmV)) be the corresponding loads on the contours L,,® and L,M®, i.e.

Q) = QIR R, Q) = Q[P () (6.1)

Following [3], it is expedient to introduce the notation

Q:‘V 6’\' ((1 Ead 01 J't) = 0
1% ” { Qﬁul (ﬁ Jt) -1, 2)

Qo = :
* QG 0<ial<m U O<IBl<m ¢
where 84, is the Kronecker delta,
If the loads Qpy (n = 1, 2) are related to the expansions of the functions Qi

then using some of the formulas of {3 ], relations (1. 1) and (6.1) and the elementary
properties of the irreducible representations, we can establish the relation
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9 N Nl

Qen® = 3 [ 3 toun (T Q% [ (¢ - 2m1) (6.2)

u=

N
2 oun (Om) Qo [ (— T - 2mi)

where Tpun (&) (0, m =1, 2; g & C)) is the PN -element of the matrix Tp (g)
givenin[3], N = n/2 and -N = (n — 1)/2 for the even and odd values of 7,
respectively,

The scheme for computing the stress-strain state of the plate under the load Qo.’m
is as follows: using the theorem of [ 3], we determine the structure of the expansion of
the function Q:m, i, e. we clarify the generalized periodic problems to be solved;
then we use the formulas (6,2 ) to find the values of the loads on the contour L for
these problems; finally we study the problems and apply the principle of superposition.

Fig.2

As an example, let us consider a plate (a = 3;d = 1,4) in which the contour of
every fourteenth hole , as counted from the basic hole, is acted upon by uniformly dis -
tributed bending moments of intensity 2M. Let us separate the loading of the plate
into loads symmetric an and skew symmetric Q(m with respect to the imaginary
axis,

The symmetric component is transformed according to the representation 7o* of the
group C,* (n= 7). In accordance with [3] we have

N
*_or =\ Db 1 2
Qo = Qg —JZ; nmg, Qigy1="7 Qumu + 7 Qs+ Qg 5y + Qop, 1) (6.3)

2n
(6=
Since
QX 1O (1 = M (¢ —d), Q% D () = IV (¢¥) =0 (m=1,2,3)
Q:); =0

the formula (6.2 ) implies that Qjp 3 () = M (¢ —d) andQjg 1, () =0 B =2r/T;
j = 0,1,2,3). The four generalized periodic problems corresponding to the expansion
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{6.3 ) were solved in Sect,5, The values of (—10* M 9/ M) on the contour L were
given for the load Q;u in the penultimate row of the table, the latter obtained by
summing the upper rows, The last row of the table corresponds to the load Qu*. The
skew symmetric component is transformed according to the representation te* (n= 7).
We have

N
n.
* % iB 1 .2
Qusy = Qon = Z i, Qipyr =7 Qi+ 7 (Qpra + Qup, 12+ Qop, 12)

) =0
(6==)

with Qg0 () = M (t —d) and Q4 (0 =0 (B = 2n/7; j = 0,1,2,3). We note that
in the present case the stress-strain state of the section of the plate contained between
the planes I, and II, and of the freely supported strip (Fig. 2) weakened by a trans-
verse set of circular holes, coincide.
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